
Q&A
Oct 2018

Can it connect to database used for NEO

reports?

 Yes it can connect to the same database as NEO.

 It uses the same code as NEO.

 As part of the installation process you need to get a compatible version of

NEO configured on that machine then uses its settings file to install in

NEOpoint. NEO can then be uninstalled.

 Can connect to any number of databases. Supported types are Oracle,

SQLServer, MySQL

Can it update automatically on a

30min basis?

 All reports in NEOpoint automatically update within a couple of seconds of

new data coming in.

 NEOpoint uses “SignalR” long polling that gives sub second responses while

only polling every minute. (Server holds onto request until data changes)

 Demo showing 5min report changing on 5min interval.

Can it alarm or have alerts for certain

criteria?

 It has alerts for a wide range of criteria, e.g. pre5min price > X etc. Alert

variables are easily added so you can pretty much create alerts on

anything.

 Demo: NEOPoint (NP) Alert page. Note: NP does not allow creation of

Equation type Alerts but they will however run in NP.

 Equations support these operators : +, -, *, /, >, <, <=, >=, =, !=, abs(). Can

access multiple columns from Alert Variable and previous value

 Sample Alert Equations:

 abs('Region Price 5min'.NSW1["Price 5min"] - 'Region Price 5min'.NSW1["Price

5min"].1) > 5

 'Region Price30min'["NSW1"] > (3 * 'STTM Ex ante market price'["SYD"])

Is it possible to have calculations conducted in a database etc and

the output be published into a NEO Point report (instead of being

done and displayed in spreadsheets)?

 Of course reports can use any number of complex SQL queries, plus you

can then process the results in NEOpoint using built-in Python scripting.

 Sample Python script on next slide shows Python script that calculates

distribution of spot prices.

 Demo: NEOpoint tabular report and dashboard.

 # Copyright (C) Intelligent Energy Systems
import System
import IES.Mercury
import MercuryUtilities #Script\MercuryUtilities
import IES.Utility

from IES.Mercury import *
from MercuryUtilities import *
from IES.Utility import EventLevel

Name: PostRun
Description: Creates a distribution of NEM spot prices based on the following Price categories
<50, 50-100, 100-300, >300.
Input: report - IES.Mercury.Reports.ReportProvider object. Provides access to two IMercuryObjects. One representing report and the other representing a set or report variables.
Remarks:
def PostRun(report):

dataObject = report.DataObject
eventLog = IES.Mercury.MercurySystem.MercuryStatic.Eventlog
if dataObject.Count < 2:

eventlog.AddEvent("Number of variables should be one at least to run this script", report.ReportObject.Name, EventLevel.Error)
return

sectionIn = dataObject[0]

sectionsOut = GetCagegoriesSections(sectionIn)
#remove existing sections except for the section representing axis
dataObject.RemoveAt(0)

for i in range(sectionsOut.Count):
dataObject.Add(sectionsOut[i])

Name: GetCagegorySections
Description: Separates values in sectionIn into different categories and calculates the percentage of each category, then creates
sections for each category with 2 columns and populates one row of each section.
Input: sectionIn - input data. Should contain at least two columns.
Remarks: The second column in sectionIn is used to calculate percentages and construct a StackedBar chart.
def GetCagegoriesSections(sectionIn):

categoryCol = IES.Mercury.MercuryColString()
categories = ["<50$/MWh", "50-100$/MWh", "100-300$/MWh", ">300$/MWh"]
#specify one section for each category
sectionsOut = CreateStringCategoriesSections("(%)", categories, Charts.ChartType.StackedBar)
barLabel = "% half and hours graph"
count = int(sectionIn[1].Count)

for i in range(count):
price = float(sectionIn[1][i])

if price < 50.0:
sectionOut = sectionsOut[0]

elif price < 100.0:
sectionOut = sectionsOut[1]

elif price <= 300.0:
sectionOut = sectionsOut[2]

else:
sectionOut = sectionsOut[3]

if sectionOut[1].Count == 0:
sectionOut[1].Add(1.0)
sectionOut[0].Add(barLabel)

else:
sectionOut[1][0] = float(sectionOut[1][0]) + 1.0

#normalize
for i in range(sectionsOut.Count):

if sectionsOut[i][1].Count > 0: #some sections may not have been populated
sectionsOut[i][1][0] = float(sectionsOut[i][1][0]) * 100 / count

return sectionsOut

Is it possible to have key NEO Point reports

accessed via iphone etc?

 Yes. You can either use the NEOpoint mobile app or use a browser to

access the NEOmobile web page that is specifically designed to work with

mobile phones.

 All reports can be access via the desktop, pad or phone views. Note that

“dashboards” are not supported in Mobile view.

 Demo: show NEOpoint in Mobile view.

